
Q&A
Oct 2018

Can it connect to database used for NEO

reports?

 Yes it can connect to the same database as NEO.

 It uses the same code as NEO.

 As part of the installation process you need to get a compatible version of

NEO configured on that machine then uses its settings file to install in

NEOpoint. NEO can then be uninstalled.

 Can connect to any number of databases. Supported types are Oracle,

SQLServer, MySQL

Can it update automatically on a

30min basis?

 All reports in NEOpoint automatically update within a couple of seconds of

new data coming in.

 NEOpoint uses “SignalR” long polling that gives sub second responses while

only polling every minute. (Server holds onto request until data changes)

 Demo showing 5min report changing on 5min interval.

Can it alarm or have alerts for certain

criteria?

 It has alerts for a wide range of criteria, e.g. pre5min price > X etc. Alert

variables are easily added so you can pretty much create alerts on

anything.

 Demo: NEOPoint (NP) Alert page. Note: NP does not allow creation of

Equation type Alerts but they will however run in NP.

 Equations support these operators : +, -, *, /, >, <, <=, >=, =, !=, abs(). Can

access multiple columns from Alert Variable and previous value

 Sample Alert Equations:

 abs('Region Price 5min'.NSW1["Price 5min"] - 'Region Price 5min'.NSW1["Price

5min"].1) > 5

 'Region Price30min'["NSW1"] > (3 * 'STTM Ex ante market price'["SYD"])

Is it possible to have calculations conducted in a database etc and

the output be published into a NEO Point report (instead of being

done and displayed in spreadsheets)?

 Of course reports can use any number of complex SQL queries, plus you

can then process the results in NEOpoint using built-in Python scripting.

 Sample Python script on next slide shows Python script that calculates

distribution of spot prices.

 Demo: NEOpoint tabular report and dashboard.

 # Copyright (C) Intelligent Energy Systems
import System
import IES.Mercury
import MercuryUtilities #Script\MercuryUtilities
import IES.Utility

from IES.Mercury import *
from MercuryUtilities import *
from IES.Utility import EventLevel

Name: PostRun
Description: Creates a distribution of NEM spot prices based on the following Price categories
<50, 50-100, 100-300, >300.
Input: report - IES.Mercury.Reports.ReportProvider object. Provides access to two IMercuryObjects. One representing report and the other representing a set or report variables.
Remarks:
def PostRun(report):

dataObject = report.DataObject
eventLog = IES.Mercury.MercurySystem.MercuryStatic.Eventlog
if dataObject.Count < 2:

eventlog.AddEvent("Number of variables should be one at least to run this script", report.ReportObject.Name, EventLevel.Error)
return

sectionIn = dataObject[0]

sectionsOut = GetCagegoriesSections(sectionIn)
#remove existing sections except for the section representing axis
dataObject.RemoveAt(0)

for i in range(sectionsOut.Count):
dataObject.Add(sectionsOut[i])

Name: GetCagegorySections
Description: Separates values in sectionIn into different categories and calculates the percentage of each category, then creates
sections for each category with 2 columns and populates one row of each section.
Input: sectionIn - input data. Should contain at least two columns.
Remarks: The second column in sectionIn is used to calculate percentages and construct a StackedBar chart.
def GetCagegoriesSections(sectionIn):

categoryCol = IES.Mercury.MercuryColString()
categories = ["<50$/MWh", "50-100$/MWh", "100-300$/MWh", ">300$/MWh"]
#specify one section for each category
sectionsOut = CreateStringCategoriesSections("(%)", categories, Charts.ChartType.StackedBar)
barLabel = "% half and hours graph"
count = int(sectionIn[1].Count)

for i in range(count):
price = float(sectionIn[1][i])

if price < 50.0:
sectionOut = sectionsOut[0]

elif price < 100.0:
sectionOut = sectionsOut[1]

elif price <= 300.0:
sectionOut = sectionsOut[2]

else:
sectionOut = sectionsOut[3]

if sectionOut[1].Count == 0:
sectionOut[1].Add(1.0)
sectionOut[0].Add(barLabel)

else:
sectionOut[1][0] = float(sectionOut[1][0]) + 1.0

#normalize
for i in range(sectionsOut.Count):

if sectionsOut[i][1].Count > 0: #some sections may not have been populated
sectionsOut[i][1][0] = float(sectionsOut[i][1][0]) * 100 / count

return sectionsOut

Is it possible to have key NEO Point reports

accessed via iphone etc?

 Yes. You can either use the NEOpoint mobile app or use a browser to

access the NEOmobile web page that is specifically designed to work with

mobile phones.

 All reports can be access via the desktop, pad or phone views. Note that

“dashboards” are not supported in Mobile view.

 Demo: show NEOpoint in Mobile view.

